FEATURES

- 6 current-limited and short-circuit-proof push-pull drivers
- Differential 3-channel operation selectable
- Integrated impedance adaption for 30 to 140Ω lines
- Wide power supply range from 4 to 40 V
- 200 mA output current (at VB $=24 \mathrm{~V}$)
- Low output saturation voltage ($<0.4 \mathrm{~V}$ at 30 mA)
- Compatible with TIA/EIA standard RS-422
- Tristate switching of outputs enables use in buses
- Short switching times and high slew rates
- Low static power dissipation
- Dynamic power dissipation reduced with iC-xSwitch
- Schmitt trigger inputs with pull-down resistors, TTL and CMOS compatible; voltage-proof up to 40 V
- Thermal shutdown with hysteresis
- Error message trigger input TNER
- Open-drain error output NER, active low with excessive chip temperature and undervoltage at VCC or VB
- Option: Extended temperature range from -40 to $125^{\circ} \mathrm{C}$

APPLICATIONS

- Line drivers for 24 V control engineering
- Linear scales and encoders
- MR sensor systems

PACKAGES

QFN28 $5 \times 5 \mathrm{~mm}^{2}$

BLOCK DIAGRAM

DESCRIPTION

iC-HX is a fast line driver with six independent channels and integrated impedance adaptation for 30 to 140Ω lines.

Channels are paired for differential 3-channel operation by a high signal at the DIFF input, providing differential output signals for the three inputs E1, E3 and E5. All inputs are compatible with CMOS and TTL levels.

The push-pull output stages have a driver power of typically 200 mA from 24 V and are short-circuitproof and current-limited, shutting down with excessive temperature. For bus applications the output stages can be switched to high impedance using input ENA.

To reduce the dynamic power dissipation in applications with long lines the iC-HX uses the iC-xSwitch.
iC-HX monitors supply voltages VB and VCC and the chip temperature, switching all output stages to high impedance in the event of error and set NER activ low. In addition, the device also monitors voltage differences at the pins VB1, VB2 and VB3 and generates an error signal if the absolut value exceeds 0.75 V .

The open-drain output NER allows the device to be wired-ORed to the relevant NER error outputs of other iC-HXs and iC-DLs. Via input TNER the message outputs of other ICs can be extended to generate system error messages. NER switches to high impedance if supply voltage VCC ceases to be applied.

The device is protected against ESD.

PACKAGES QFN12 to JEDEC Standard

PIN CONFIGURATION QFN28 $5 \times 5 \mathrm{~mm}^{2}$

PIN FUNCTIONS

No. Name Function

1 E1 Input Channel 1
2 E2 Input Channel 2
3 E3 Input Channel 3
4 n.c.
5 E4 Input Channel 4

PIN FUNCTIONS

No. Name Function
6 E5 Input Channel 5
E6 Input Channel 6
VCC +5V Supply
9 CXS6 Capacitor iC-xSwitch
10 TNER Error Input, low active
11 NER Error Output, active low
12 A6 Output Channel 6
13 GND4 Ground
14 VB3 +4.5 ... 40 V Power Supply
15 A5 Output Channel 5
16 GND3 Ground
17 A4 Output Channel 4
18 VB2 +4.5 ... 40 V Power Supply
19 A3 Output Channel 3
20 GND2 Ground
21 A2 Output Channel 2
22 VB1 +4.5 ... 40 V Power Supply
23 GND1 Ground
24 A1 Output Channel 1
25 NXS Enable iC-xSwitch, low active
26 ENA Enable Input, high active
27 CXS1 Capacitor iC-xSwitch
28 DIFF Differential Mode Input, high active

The pins VB1, VB2 and VB3 must be connected to the same driver supply voltage VB. The pins GND1, GND2, GND3 and GND4 must be connected to GND. To improve heat dissipation, the thermal pad at the bottom of the package should be joined to an extended copper area which must have GND potential.

ABSOLUTE MAXIMUM RATINGS

Beyond these values damage may occur; device operation is not guaranteed. Absolute Maximum Ratings are no Operating Conditions. Integrated circuits with system interfaces, e.g. via cable accessible pins (I/O pins, line drivers) are per principle endangered by injected interferences, which may compromise the function or durability. The robustness of the devices has to be verified by the user during system development with regards to applying standards and ensured where necessary by additional protective circuitry. By the manufacturer suggested protective circuitry is for information only and given without responsibility and has to be verified within the actual system with respect to actual interferences.

Item No.	Symbol	Parameter	Conditions	Min.	Max.	Unit
G001	VCC	Supply Voltage		0	7	V
G002	VBx	Driver Supply Voltage VB1, VB2, VB3		0	40	V
G003	V()	Voltage at E1...6, A1...6, DIFF, ENA, TNER		0	40	V
G004	I(Ax)	Driver Output Current ($\mathrm{x}=1 . . .6$)		-800	800	mA
G005	I(Ex)	Input Current Driver E1...E6, Diff, ENA, TNER		-4	4	mA
G006	V(NER)	Voltage at NER		0	40	V
G007	I(NER)	Current in NER		-4	25	mA
G008	V()	ESD Suceptibility at all pins	HBM 100 pF discharged through $1.5 \mathrm{k} \Omega$		2	kV
G009	Tj	Operating Junction Temperature		-40	140	${ }^{\circ} \mathrm{C}$
G010	Ts	Storage Temperature Range		-40	150	${ }^{\circ} \mathrm{C}$

THERMAL DATA

Operating conditions: VB1 $\ldots 3=4.5 \ldots 40 \mathrm{~V}, \mathrm{VCC}=4.5 \ldots 5.5 \mathrm{~V}$ or $\mathrm{VB} 1 \ldots 3=\mathrm{VCC}=4 \ldots 5.5 \mathrm{~V}$

| tem
 No. | Symbol | Parameter | Conditions | Min. | Typ. |
| :--- | :--- | :--- | :---: | :---: | :---: | Max. | Unit | | |
| :---: | :---: | :---: |
| T01 | Ta | Operating Ambient Temperature Range
 (extended range to $-40^{\circ} \mathrm{C}$ on request) |
| | Thermal Resistance Chip to Ambient | surface mounted, thermal pad soldered to
 approx. $2 \mathrm{~cm}^{2}$ heat sink |
| T02 | Rthja | Th/W |

ELECTRICAL CHARACTERISTICS

Operating Conditions: VB1 .. $3=4.5 \ldots 32 \mathrm{~V}, \mathrm{VCC}=4 \ldots 5.5 \mathrm{~V}, \mathrm{Tj}=-40 \ldots 140^{\circ} \mathrm{C}$, unless otherwise noted
input level lo $=0 \ldots 0.45 \mathrm{~V}$, hi $=2.4 \mathrm{~V} . . . \mathrm{VCC}$, timing diagram see fig. 1

Item No.	Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
General ($\mathrm{x}=1 . .6$)							
001	VBx	Supply Voltage Range (Driver)		4		40	V
002	I(VBx)	Supply Current in VB1...3	Ax = 10			8	mA
003	I(VBx)	Supply Current in VB1... 3	Ax = hi			8	mA
004	I(VBx)	Supply Current in VB1, Outputs A1... 2 Tri-State	$\begin{aligned} & \mathrm{ENA}=\mathrm{lo}, \\ & \mathrm{~V}(\mathrm{~A} 1 \ldots 2)=-0.3 \ldots(\mathrm{VB}+0.3 \mathrm{~V}) \end{aligned}$			4	mA
005	I(VBx)	Supply Current in VB2...3, Outputs A3... 6 Tri-State	$\begin{aligned} & \mathrm{ENA}=\mathrm{lo}, \\ & \mathrm{~V}(\mathrm{~A} 3 \ldots 6)=-0.3 \ldots(\mathrm{VB}+0.3 \mathrm{~V}) \end{aligned}$			2	mA
006	$\mathrm{IO}(\mathrm{Ax})$	Output Leakage Current	ENA $=10, \mathrm{~V}(\mathrm{Ax})=0 \ldots \mathrm{VB}$	-50		50	$\mu \mathrm{A}$
007	VCC	Supply Voltage Range (Logic)		4		5.5	V
008	I(VCC)	Supply Current in VCC	ENA = hi, Ax = lo			10	mA
009	Vc() lo	Clamp Voltage low at pins VB1...3, A1...6, E1...6, DIFF, ENA TNER, NER, VCC	l()$=-10 \mathrm{~mA}$, all other pins open	-1.2		0.4	V
010	Vc() hi	Clamp Voltage high at pins VB1...3, A1...6, E1...6, DIFF, ENA TNER, NER	I()$=1 \mathrm{~mA}$, all other pins open	41		64	V
011	I(VBx)	Supply Current in VB1... 3	$\mathrm{ENA}=\mathrm{hi}, \mathrm{f}(\mathrm{E} 1 . .6)=1 \mathrm{MHz}$			10	mA
Driver Outputs A1...6, Low-Side-action (x = 1...6)							
101	$\mathrm{Vs}(\mathrm{Ax}) \mathrm{lo}$	Saturation Voltage low	$I(A x)=10 \mathrm{~mA}, \mathrm{Ax}=\mathrm{low}$			0.2	V
102	$\mathrm{Vs}(\mathrm{Ax}) \mathrm{lo}$	Saturation Voltage low	$\mathrm{I}(\mathrm{Ax})=30 \mathrm{~mA}, \mathrm{Ax}=\mathrm{low}$			0.4	V
103	$\mathrm{Isc}(\mathrm{Ax}) \mathrm{lo}$	Short circuit current low	$\mathrm{V}(\mathrm{Ax})=1.5 \mathrm{~V}$	30	50	70	mA
104	$\mathrm{Isc}(\mathrm{Ax}) \mathrm{lo}$	Short circuit current low	$\mathrm{V}(\mathrm{Ax})=\mathrm{VB}, \mathrm{Ax}=$ low			800	mA
105	$\operatorname{Rout}(\mathrm{Ax})$	Output resistance	$\mathrm{VB}=10 \ldots 40 \mathrm{~V}, \mathrm{~V}(\mathrm{Ax})=0.5^{*} \mathrm{VB}$	40	75	100	Ohm
106	SR(Ax)lo	Slew Rate low	$\mathrm{VB}=40 \mathrm{~V}, \mathrm{Cl}(\mathrm{Ax})=100 \mathrm{pF}$	200		1000	V/us
107	Vc() lo	Free Wheel Clamp Voltage low	$l(A x)=-100 \mathrm{~mA}$	-1.4		-0.5	V
Driver Outputs A1...6, High-Side-action ($x=1 . . .6$)							
201	$\mathrm{Vs}(\mathrm{Ax}) \mathrm{hi}$	Saturation Voltage high	$\mathrm{Vs}(\mathrm{Ax}) \mathrm{hi}=\mathrm{VB}-\mathrm{V}(\mathrm{Ax}), \mathrm{I}(\mathrm{Ax})=-10 \mathrm{~mA}, \mathrm{Ax}=\mathrm{hi}$			0.2	V
202	$\mathrm{Vs}(\mathrm{Ax}) \mathrm{hi}$	Saturation Voltage high	$\mathrm{Vs}(\mathrm{Ax}) \mathrm{hi}=\mathrm{VB}-\mathrm{V}(\mathrm{Ax}), \mathrm{I}(\mathrm{Ax})=-30 \mathrm{~mA}, \mathrm{Ax}=\mathrm{hi}$			0.5	V
203	$\operatorname{lsc}(\mathrm{Ax}) \mathrm{hi}$	Short circuit current high	$\mathrm{V}(\mathrm{Ax})=\mathrm{VB}-1.5 \mathrm{~V}, \mathrm{Ax}=\mathrm{hi}$	-70	-50	-30	mA
204	$\operatorname{lsc}(\mathrm{Ax}) \mathrm{hi}$	Short circuit current high	$\mathrm{V}(\mathrm{Ax})=0 \mathrm{~V}, \mathrm{Ax}=\mathrm{hi}$	-800			mA
205	Rout(Ax)hi	Output resistance	$\mathrm{VB}=10 . .40 \mathrm{~V}, \mathrm{~V}(\mathrm{Ax})=0.5$ * VB	40	75	100	Ohm
206	SR(Ax)hi	Slew Rate high	$\mathrm{VB}=40 \mathrm{~V}, \mathrm{Cl}(\mathrm{Ax})=100 \mathrm{pF}$	200		1000	V/ $/ \mathrm{s}$
207	$\mathrm{Vc}(\mathrm{Ax}) \mathrm{hi}$	Free Wheel Clamp Voltage high	$\begin{aligned} & \mathrm{I}(\mathrm{Ax})=100 \mathrm{~mA}, \\ & \mathrm{VB}=\mathrm{VCC}=\mathrm{GND} \end{aligned}$	0.5		1.4	V
iC-xSwitch CXS1, CXS6, A1...6, VB1... 3							
301	VBxs,on	Turn-on threshold iC-xSwitch				12	V
302	VBxs,off	Turn-off threshold iC-xSwitch		11			V
303	VBxs, hys	Hysteresis		150			mV
304	Ron()	On-resistance iC-xSwitch	$\mathrm{VBx}=40 \mathrm{~V}, \mathrm{~V}(\mathrm{CXSx})=20 \mathrm{~V}, \mathrm{I}(\mathrm{Ax})= \pm 350 \mathrm{~mA}$			7	Ohm
305	Vth(Ax) hi	Higher threshold hi	$\mathrm{VBx}=12 \ldots 40 \mathrm{~V}$			73	\%VB
306	Vth(Ax)lo	Higher threshold lo	$V B x=12 . . .40 \mathrm{~V}$	63			\%VB
307	Vth(Ax)hys	Higher hysteresis	$V B x=12 \ldots 40 \mathrm{~V}$	100			mV
308	Vtl(Ax)hi	Lower threshold hi	$V B x=12 \ldots 40 \mathrm{~V}$			40	\%VB
309	Vtl(Ax)lo	Lower threshold lo	$V B x=12 \ldots 40 \mathrm{~V}$	30			\%VB
310	Vtl(Ax)hys	Lower hysteresis	$\mathrm{VBx}=12 \ldots 40 \mathrm{~V}$	100			mV
Switch control							
401	tdmin	Minumum time for line reflection	$\mathrm{VB}=12 \ldots 40 \mathrm{~V}$	100	200	300	ns
402	tXSon(Ax)	On-time iC-xSwitch	$\mathrm{f}(\mathrm{Ex})=500 \mathrm{KHz}, \mathrm{td}=800 \mathrm{~ns}, \mathrm{VB}=12 \ldots 40 \mathrm{~V}$	400		600	ns
403	tXSon(Ax)	On-time iC-xSwitch	$\mathrm{f}(\mathrm{Ex})=100 \mathrm{KHz}, \mathrm{td}=4 \mu \mathrm{~s}, \mathrm{VB}=12 \ldots 40 \mathrm{~V}$	3.2		3.8	$\mu \mathrm{s}$
CXS-generation CXS1, CXS6							

ELECTRICAL CHARACTERISTICS

Operating Conditions: VB1 .. $3=4.5 \ldots 32 \mathrm{~V}, \mathrm{VCC}=4 \ldots 5.5 \mathrm{~V}, \mathrm{Tj}=-40 \ldots 140^{\circ} \mathrm{C}$, unless otherwise noted
input level lo $=0 \ldots 0.45 \mathrm{~V}$, hi $=2.4 \mathrm{~V} . . . \mathrm{VCC}$, timing diagram see fig. 1

Item No.	Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
501	V()	Voltage at CXS1, CXS6	$\mathrm{VB}=12 \ldots 40 \mathrm{~V}, \mathrm{I}(\mathrm{CXSXx})= \pm 100 \mu \mathrm{~A}$	47	50	53	\%VB
502	Isc()lo	Short circuit current lo	$\mathrm{VB}=12 \ldots 40 \mathrm{~V}, \mathrm{CXS} x=0 \mathrm{~V}$	2		20	mA
503	Isc()hi	Short circuit current hi	$\mathrm{VB}=12 \ldots 40 \mathrm{~V}, \mathrm{CXSx}=\mathrm{VB}$	-20		-2	mA
504	Vc() hi	Clamp Voltage hi	1()$=10 \mathrm{~mA}, \mathrm{VB}=\mathrm{VCC}=\mathrm{GND}$	0.5		1.4	V
505	Vth()hi	higher turn-off threshold iCxSwitch	$\mathrm{VB}=12 \ldots 40 \mathrm{~V}$			73	\%VB
506	Vth()Io	higher turn-on threshold iCxSwitch	$\mathrm{VB}=12 \ldots 40 \mathrm{~V}$	63			\%VB
507	Vth()hys	Hysteresis	Vth()hys = Vth()hi - Vth()lo	100			mV
508	Vtl() hi	lower turn-on threshold iCxSwitch	$\mathrm{VB}=12 \ldots 40 \mathrm{~V}$			40	\%VB
509	Vtl()lo	lower turn-off threshold iCxSwitch	$\mathrm{VB}=12 . . .40 \mathrm{~V}$	30			\%VB
510	Vtl()hys	Hysteresis	Vtl()hys = Vtl()hi - Vtl()lo	100			mV
Inputs E1...6, DIFF, ENA, TNER							
601	Vt() hi	Threshold Voltage high				2	V
602	Vt()lo	Threshold Voltage low		0.8			V
603	$\mathrm{Vt}($)hys	Input Hysteresis	Vt()hys = Vt()hi - Vt()lo	200	400	800	mV
604	$\operatorname{lpd}()$	Pull-Down-Current	V()$=0.8 \mathrm{~V}$	10		80	$\mu \mathrm{A}$
605	Ipd()	Pull-Down-Current	V()$\leq 40 \mathrm{~V}$	15		160	$\mu \mathrm{A}$
606	II(E1...6)	Leakage current at E1... 6	ENA = lo	-10		10	$\mu \mathrm{A}$
Supply Voltage Control VB							
701	VBon	Threshold Value at VB for Undervoltage Detection on	$\begin{aligned} & \|\mathrm{VB} 1-\mathrm{VB} 2\| \&\|\mathrm{VB} 2-\mathrm{VB} 3\| \&\|\mathrm{VB} 1-\mathrm{VB} 3\|< \\ & 0.75 \mathrm{~V} \end{aligned}$			3.95	V
702	VBoff	Threshold Value at VB for Undervoltage Detection off	$\begin{aligned} & \mid \text { VB1 - VB2\| \& \|VB2 - VB3 }\|\&\| \text { VB1 - VB3 } \mid< \\ & 0.75 \mathrm{~V} \end{aligned}$	3			V
703	VBhys	Hysteresis	VBhys = VBon - VBoff	150			mV
Supply Voltage Difference Control VB1... 3							
801	Vth(VBx)	Threshold Condition for Supply Voltage Difference Control	$\begin{aligned} & \Delta \mathrm{V}(\mathrm{VBx})=\mathrm{MAX}(\|\mathrm{VB} 1-\mathrm{VB} 2\|,\|\mathrm{VB} 2-\mathrm{VB} 3\|, \\ & \|\mathrm{VB} 1-\mathrm{VB}\| \\ & \text { NER } \Rightarrow \text { low } \end{aligned}$	0.75		1.85	V
Supply Voltage Control VCC							
901	VCCon	Threshold Value at VCC for Undervoltage Detection on				3.95	V
902	VCCoff	Threshold Value at VCC for Undervoltage Detection off		3			V
903	VCChys	Hysteresis	VCChys = VCCon - VCCoff	100			mV
Temperatur Control							
A01	Toff	Thermal Shutdown Threshold	increasing temperature	145		175	${ }^{\circ} \mathrm{C}$
A02	Ton	Thermal Lock-on Threshold	decreasing temperature	130		165	${ }^{\circ} \mathrm{C}$
A03	Thys	Thermal Shutdown Hysteresis	Thys = Ton - Toff	4	12		${ }^{\circ} \mathrm{C}$
Error Output NER							
B01	Vs()	Saturation Voltage low at NER	$1(N E R)=5 \mathrm{~mA}, \mathrm{NER}=10$			0.4	V
B02	Isc()	Short Circuit Current low at NER	$\mathrm{V}(\mathrm{NER})=2 \ldots 40 \mathrm{~V}, \mathrm{NER}=10$	6	12	20	mA
B03	IO()	Leakage Current at NER	$\mathrm{V}($ NER $)=0 \mathrm{~V} . . . \mathrm{VB}$, NER $=\mathrm{hi}$	-10		10	$\mu \mathrm{A}$
B04	VCC	Supply Voltage for NER function	$\begin{aligned} & \mathrm{I}(\mathrm{NER})=5 \mathrm{~mA}, \mathrm{NER}=10, \\ & \mathrm{Vs}(\mathrm{NER})<0.4 \mathrm{~V} \end{aligned}$	2.9			V

OPERATING CONDITIONS

Operating Conditions: VB1... $3=4.5 \ldots 32 \mathrm{~V}, \mathrm{VCC}=4 \ldots 5.5 \mathrm{~V}, \mathrm{Tj}=-40 \ldots 140^{\circ} \mathrm{C}$, unless otherwise noted
input level $\mathrm{lo}=0 \ldots 0.45 \mathrm{~V}, \mathrm{hi}=2.4 \mathrm{~V} \ldots \mathrm{VCC}$, timing diagram see fig. 1

Item No.	Symbol	Parameter	Conditions	Min.	Max.	Unit
Time Delays						
1001	tplh(E-A)	Propagation Delay Ex $\Rightarrow A x$	DIFF $=10, \mathrm{Cl}()=100 \mathrm{pF}$		400	ns
1002	tphl(E-A)	Propagation Delay Ex $\Rightarrow A x$	DIFF $=1 \mathrm{l}, \mathrm{Cl}()=100 \mathrm{pF}$		200	ns
1003	$\Delta \operatorname{tplh}(A x)$	Differenz der Propagation Delay $\|A 1 \Rightarrow A 2\|,\|A 3 \Rightarrow A 4\|,\|A 5 \Rightarrow A 6\|$	DIFF $=$ hi, Cl()$=100 \mathrm{pF}$		100	ns
1004	$\Delta \operatorname{tphl}(\mathrm{Ax})$	Differenz der Propagation Delay $\|A 1 \Rightarrow A 2\|,\|A 3 \Rightarrow A 4\|,\|A 5 \Rightarrow A 6\|$	DIFF $=$ hi, Cl()$=100 \mathrm{pF}$		100	ns
1005	tplh(ENA)	Propagation Delay ENA $\Rightarrow A x$	$\begin{aligned} & \mathrm{Ex}=\mathrm{hi}, \mathrm{DIFF}=\mathrm{lo}, \mathrm{Cl}()=100 \mathrm{pF} \\ & \mathrm{RI}(\mathrm{Ax}, \mathrm{GND})=5 \mathrm{k} \Omega \end{aligned}$		300	ns
1006	tplh(ENA)	Propagation Delay ENA $\Rightarrow A x$	$\begin{aligned} & \mathrm{Ex}=\mathrm{lo}, \mathrm{DIFF}=\mathrm{lo}, \mathrm{Cl}()=100 \mathrm{pF} \\ & \mathrm{RI}(\mathrm{VB}, \mathrm{Ax})=100 \mathrm{k} \Omega \end{aligned}$		200	ns
1007	tphl(ENA)	Propagation Delay ENA $\Rightarrow A x$	$\mathrm{Ex}=\mathrm{lo}, \mathrm{DIFF}=\mathrm{lo}, \mathrm{RI}(\mathrm{VB}, \mathrm{Ax})=5 \mathrm{k} \Omega$		500	ns
1008	tphl(ENA)	Propagation Delay ENA $\Rightarrow A x$	$\mathrm{Ex}=\mathrm{hi}$, DIFF $=10, \mathrm{RI}(\mathrm{Ax}, \mathrm{GND})=5 \mathrm{k} \Omega$		500	ns
1009	tphl(DIFF)	Propagation Delay DIFF \Rightarrow A2, A4, A6	$\mathrm{E} 1, \mathrm{E} 3, \mathrm{E} 5=\mathrm{hi}, \mathrm{Cl}()=100 \mathrm{pF}$		250	ns
1010	tplh(DIFF)	Propagation Delay DIFF \Rightarrow A2, A4, A6	$\mathrm{E} 1, \mathrm{E} 3, \mathrm{E} 5=\mathrm{lo}, \mathrm{Cl}()=100 \mathrm{pF}$		400	ns
1011	tplh(TNER)	Propagation Delay TNER \Rightarrow NER	$\mathrm{RI}(\mathrm{VB}, \mathrm{NER})=5 \mathrm{k} \Omega, \mathrm{Cl}()=100 \mathrm{pF}$		2	$\mu \mathrm{s}$
1012	tpoff(VBx)			0.3	3	$\mu \mathrm{s}$

Figure 1: Reference levels for delays

DESCRIPTION

Line drivers for control engineering couple TTL- or CMOS-compatible digital signals with 24 V systems via cables. The maximum permissible signal frequency is dependent on the capacitive load of the outputs (cable length) or, more specifically, the power dissipation in iC-HX resulting from this. To avoid possible short circuiting the drivers are current-limited and shutdown with excessive temperature.

When the output is open the maximum output voltage corresponds to supply voltage VB (with the exception of any saturation voltages). Figure 2 gives the typical DC output characteristic of a driver as a function of the load. The differential output resistance is typically 75Ω over a wide voltage range.

Figure 2: Load dependence of the output voltage (High-side stage)

Each open-circuited input is set to low by an internal pull-down current source; an additional connection to GND increases the device's immunity to interference. The inputs are TTL- and CMOS-compatible. Due to their high input voltage range, the inputs can also be set to high-level by applying VCC or VB.

LINE EFFECTS

In PLC systems data transmission using 24 V signals usually occurs without a matched line termination. A mismatched line termination generates reflections which travel back and forth if there is also no line adaptation on the driver side of the device. With rapid pulse trains transmission is disrupted. In iC-HX, however, further reflection of back travelling signals is pre-
vented by an integrated impedance network, as shown in Figure 3.

Figure 3: Reflections caused by a mismatched line termination

During a pulse transmission the amplitude at the iCoutput initially only increases to half the value of supply voltage VB as the internal driver resistance and characteristic line impedance form a voltage divider. A wave with this amplitude is coupled into the line and experiences after a delay a total reflection at the highimpedance end of the line. At this position, the reflected wave superimposes with the transmitted wave and generates a signal with the double wave amplitude at the receiving device.

Figure 4: Pulse transmission and transit times

After a further delay, the reflected wave also increases the driver output to the full voltage swing. iC-HX's integrated impedance adapter prevents any further reflection and the achieved voltage is maintained along and at the termination of the line.

A mismatch between $\mathrm{iC}-\mathrm{HX}$ and the transmission line influences the level of the signal wave first coupled into the line, resulting in reflections at the beginning of the line. The output signal may then have a number of graduations. Voltage peaks beyond VB or below GND are capped by integrated diodes. By this way, transmisssion lines with a characteristic impedance of between 30 and 140Ω thus permit correct operation of the device.

iC-xSwitch

Power dissipation in the driver occurs with each switching edge when over the double signal run time the internal resistor forms a voltage divider with the characteristic line impedance and is proportional to the length of the connected line and the switching frequency. If the internal resistor is perfectly matched to the characteristic line impedance, the voltage divider generates half the supply voltage at the line input, only supplying the full voltage when an echo occurs. iC-HX exploits this behavior of the open line in order to reduce the power dissipation in the driver. A switch is triggered by applying the halved low-impedance supply voltage, buffered with capacitors, to the line input and terminated by applying the internal resistor shortly before the echo occurs. Power dissipation occurs regardless of the length of the connected line in the time between the application of the resistor to the line and the beginning of the echo. In order to control this process iC-HX must recognize the length of the connected line. The line is measured using an integrated procedure which evaluates the line echo. This principle of power dissipation reduction only functions when a single wave travels along the line. The maximum transmission frequency with a reduced power dissipation is directly proportional to the line length. If the transmission frequency is too high for the line length, $\mathrm{iC}-\mathrm{xS}$ witch is no longer used, resulting in increased power dissipation in the driver. The required halved supply voltage is generated internally in the chip and must be buffered by capacitors. On a rising edge current flows from the capacitor into the line and back into the capacitor on a falling edge. With the differential operation of two lines the currents flow from one line to the other and back again.

Figure 5 shows the three switches, the integrated resistor to match the characteristic line impedance and the connected line. VB is the positive power supply and $\mathrm{VB} / 2$ is the half of it. The control of the switches depends on the input signals of the device and the length of the connected line. With all enable-signals at lo-level the output A is high impedance (tristate).

Figure 5: Circuit diagram with switches and line

Figures 6 and 7 show the input signal $\mathrm{V}(\mathrm{E})$, the switch trigger signals derived from this and the voltage curve
at the beginning (A) and end (B) of the line at intervals t1 to t8. Figure 6 shows operation without iC-Xswitch. Power dissipation $P_{D}(H X)$ occurs at intervals t1 to t4 and t5 to t8. Figure 7 describes operation with iCxSwitch; power dissipation $\mathrm{P}_{\mathrm{D}}(\mathrm{HX})$ occurs between t3 and t 4 and t 7 and t 8 . The mean power dissipation is significant for the warming of the device, which is proportional to the duty cycle. This results in a reduced power dissipation (at the same frequency), meaning there is less power dissipation with a shorter line or through the use of $\mathrm{iC}-\mathrm{xS}$ witch with a long line, for example.

Figure 6: Power dissipation $P_{D}(H X)$ without iCxSwitch

Figure 7: Power dissipation $\mathrm{P}_{\mathrm{D}}(\mathrm{HX})$ with $\mathrm{iC}-\mathrm{xS}$ witch

An example for the power dissipation is given in figure 8. When xSwitch is not used by setting NXS to high, the iC-HX behaves like the iC-DL.

Figure 8: Power dissipation with and without xSwitch-Mode

DEMO BOARD

iC-HX is in a QFN28 package and comes with a demo wiring and the top of the demo board. board for test purposes. Figures 9 to 10 shows the

Figure 9: Demo-Board ,top view

Rev A1, Page 10/11

Figure 10: Circuit diagram of the demo board
iC-Haus expressly reserves the right to change its products and/or specifications. An info letter gives details as to any amendments and additions made to the relevant current specifications on our internet website www.ichaus.de; this letter is generated automatically and shall be sent to registered users by email. Copying - even as an excerpt - is only permitted with iC-Haus approval in writing and precise reference to source.
iC-Haus does not warrant the accuracy, completeness or timeliness of the specification on this site and does not assume liability for any errors or omissions in the materials. The data specified is intended solely for the purpose of product description. No representations or warranties, either express or implied, of merchantability, fitness for a particular purpose or of any other nature are made hereunder with respect to information/specification or the products to which information refers and no guarantee with respect to compliance to the intended use is given. In particular, this also applies to the stated possible applications or areas of applications of the product.
iC-Haus conveys no patent, copyright, mask work right or other trade mark right to this product. iC-Haus assumes no liability for any patent and/or other trade mark rights of a third party resulting from processing or handling of the product and/or any other use of the product.
As a general rule our developments, IPs, principle circuitry and range of Integrated Circuits are suitable and specifically designed for appropriate use in technical applications, such as in devices, systems and any kind of technical equipment, in so far as they do not infringe existing patent rights. In principle the range of use is limitless in a technical sense and refers to the products listed in the inventory of goods compiled for the 2008 and following export trade statistics issued annually by the Bureau of Statistics in Wiesbaden, for example, or to any product in the product catalogue published for the 2007 and following exhibitions in Hanover (Hannover-Messe).
We understand suitable application of our published designs to be state-of-the-art technology which can no longer be classed as inventive under the stipulations of patent law. Our explicit application notes are to be treated only as mere examples of the many possible and extremely advantageous uses our products can be put to.

ORDERING INFORMATION

Type	Package	Order Designation
iC-HX iC-HX Evaluation Board	QFN28 $5 \times 5 \mathrm{~mm}^{2}$	iC-HX QFN28 iC-HX EVAL HX2D

For technical support, information about prices and terms of delivery please contact:

iC-Haus GmbH	Tel.: $+49(6135) 9292-0$
Am Kuemmerling 18	Fax: $+49(6135) 9292-192$
D-55294 Bodenheim	Web: http://www.ichaus.com
GERMANY	E-Mail: sales@ichaus.com

Appointed local distributors: http://www.ichaus.de/support_distributors.php

